Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0289813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37561696

RESUMO

The value of combining hybridization and mutagenesis in sesame was examined to determine if treating hybrid sesame plant material with mutagens generated greater genetic variability in four key productivity traits than either the separate hybridization or mutation of plant material. In a randomized block design with three replications, six F2M2 varieties, three F2varieties, and three parental varieties were assessed at Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India. The plant characteristics height, number of seed capsules per plant, and seed yield per plant had greater variability in the F2M2 generation than their respective controls (F2), however, the number of primary branches per plant varied less than in the control population. The chances for trait selection to be operative were high for all the characteristics examined except the number of primary branches per plant, as indicated by heritability estimates. Increases in the mean and variability of the characteristics examined indicted a greater incidence of beneficial mutations and the breakdown of undesirable linkages with increased recombination. At both phenotypic and genotypic levels strong positive correlations between both primary branch number and capsule number with seed yield suggest that these traits are important for indirect improvement in sesame seed yield. As a result of the association analysis, sesame seed yield and its component traits improved significantly, which may be attributed to the independent polygenic mutations and enlarged recombination of the polygenes controlling the examined characteristics. Compared to the corresponding control treatment or to one cycle of mutagenic treatment, two cycles of mutagenic treatment resulted in increased variability, higher transgressive segregates, PTS mean and average transgression for sesame seed yield. These findings highlight the value of implementing two EMS treatment cycles to generate improved sesame lines. Furthermore, the extra variability created through hybridization may have potential in subsequent breeding research and improved seed yield segregants may be further advanced to develop ever-superior sesame varieties.


Assuntos
Sesamum , Sesamum/genética , Melhoramento Vegetal , Fenótipo , Genótipo , Mutagênese
2.
Cells ; 12(10)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37408207

RESUMO

Vegetative to reproductive phase transition in phototropic plants is an important developmental process and is sequentially mediated by the expression of micro-RNA MIR172. To obtain insight into the evolution, adaptation, and function of MIR172 in photophilic rice and its wild relatives, we analyzed the genescape of a 100 kb segment harboring MIR172 homologs from 11 genomes. The expression analysis of MIR172 revealed its incremental accumulation from the 2-leaf to 10-leaf stage, with maximum expression coinciding with the flag-leaf stage in rice. Nonetheless, the microsynteny analysis of MIR172s revealed collinearity within the genus Oryza, but a loss of synteny was observed in (i) MIR172A in O. barthii (AA) and O. glaberima (AA); (ii) MIR172B in O. brachyantha (FF); and (iii) MIR172C in O. punctata (BB). Phylogenetic analysis of precursor sequences/region of MIR172 revealed a distinct tri-modal clade of evolution. The genomic information generated in this investigation through comparative analysis of MIRNA, suggests mature MIR172s to have evolved in a disruptive and conservative mode amongst all Oryza species with a common origin of descent. Further, the phylogenomic delineation provided an insight into the adaptation and molecular evolution of MIR172 to changing environmental conditions (biotic and abiotic) of phototropic rice through natural selection and the opportunity to harness untapped genomic regions from rice wild relatives (RWR).


Assuntos
MicroRNAs , Oryza , Oryza/genética , Oryza/metabolismo , Filogenia , MicroRNAs/genética , MicroRNAs/metabolismo , Folhas de Planta/metabolismo
3.
Genes (Basel) ; 14(4)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37107660

RESUMO

Seed vigor is the key performance parameter of good quality seed. A panel was prepared by shortlisting genotypes from all the phenotypic groups representing seedling growth parameters from a total of 278 germplasm lines. A wide variation was observed for the traits in the population. The panel was classified into four genetic structure groups. Fixation indices indicated the existence of linkage disequilibrium in the population. A moderate to high level of diversity parameters was assessed using 143 SSR markers. Principal component, coordinate, neighbor-joining tree and cluster analyses showed subpopulations with a fair degree of correspondence with the growth parameters. Marker-trait association analysis detected eight novel QTLs, namely qAGR4.1, qAGR6.1, qAGR6.2 and qAGR8.1 for absolute growth rate (AGR); qRSG6.1, qRSG7.1 and qRSG8.1 for relative shoot growth (RSG); and qRGR11.1 for relative growth rate (RGR), as analyzed by GLM and MLM. The reported QTL for germination rate (GR), qGR4-1, was validated in this population. Additionally, QTLs present on chromosome 6 controlling RSG and AGR at 221 cM and RSG and AGR on chromosome 8 at 27 cM were detected as genetic hotspots for the parameters. The QTLs identified in the study will be useful for improvement of the seed vigor trait in rice.


Assuntos
Oryza , Plântula , Plântula/genética , Germinação/genética , Oryza/genética , Locos de Características Quantitativas/genética , Genômica
4.
Biomolecules ; 13(2)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36830568

RESUMO

Ranidhan is a popular late-maturing rice variety of Odisha state, India. The farmers of the state suffer heavy loss in years with flash floods as the variety is sensitive to submergence. Bacterial blight (BB) disease is a major yield-limiting factor, and the variety is susceptible to the disease. BB resistance genes Xa21, xa13, and xa5, along with the Sub1 QTL, for submergence stress tolerance were transferred into the variety using marker-assisted backcross breeding approach. Foreground selection using direct and closely linked markers detected the progenies carrying all four target genes in the BC1F1, BC2F1, and BC3F1 generations, and the positive progenies carrying these genes with maximum similarity to the recipient parent, Ranidhan, were backcrossed into each segregating generation. Foreground selection in the BC1F1 generation progenies detected all target genes in 11 progenies. The progeny carrying all target genes and similar to the recipient parent in terms of phenotype was backcrossed, and a total of 321 BC2F1 seeds were produced. Ten progenies carried all target genes/QTL in the BC2F1 generation. Screening of the BC3F1 progenies using markers detected 12 plants carrying the target genes. A total of 1270 BC3F2 seeds were obtained from the best BC3F1 progeny. Foreground selection in the BC3F2 progenies detected four plants carrying the target genes in the homozygous condition. The bioassay of the pyramided lines conferred very high levels of resistance to the predominant isolates of bacterial blight pathogen. These BB pyramided lines were submergence-tolerant and similar to Ranidhan in 13 agro-morphologic and grain quality traits; hence, they are likely to be adopted by farmers.


Assuntos
Infecções Bacterianas , Oryza , Marcadores Genéticos , Oryza/genética , Resistência à Doença/genética , Embaralhamento de DNA , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...